MAT 3749 1.3 Part III Handout

 Closed Sets
A set 
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[image: image2.wmf]\

c

KK

=

¡

 is open.
 Example 1
(a) 
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(c) The empty set 
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 is closed.
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(e) Any finite set 
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(f) The set 
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 is closed.
(h) 
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 are the only two subsets of  
[image: image14.wmf]¡

 that are both open and closed.

 Theorem
1.  The intersection of arbitrary collection of closed sets is closed.
2.  The union of a finite number of closed sets is closed.

	Proof




 Open Cover
An open cover of a set 
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is a collection 
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 Finite Subcover

A finite subcover of 
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is a finite collection 
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 Compact Sets

A set 
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is compact if every open cover of 
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has a finite subcover.

 Example 2
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	Analysis

We need to construct an open cover of 
[image: image25.wmf](

)

0,1

 without a finite subcover.



	Let us try this popular cover of 
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Let 
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Draw a diagram to illustrate 
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	How does 
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	Let us pick a finite subcover, say 
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Draw a diagram to illustrate 
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 along with the finite subcover above.


	

	Select a “convenient” point in 
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, but not in the subcover above. 


	

	Why 
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	With the experience of working with one particular finite subcover, let us work with a general finite subcover of 
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be a finite subcover of 
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Explain why 
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	Simplify 
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	What is a “convenient” point in 
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, but not in the subcover above?


	


	Proof

Let 
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Suppose 
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has a finite subcover 
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Thus, 
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Now, 
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This implies that 
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which contradicts the assumption that 
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So,
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 Recall: The Completeness Axiom
Let E be a non-empty subset of 
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.  

1. If E is bounded above, then E has a least upper bound.

2. If E is bounded below, then E has a greatest lower bound.

 Bounded Sets
A set 
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is bounded if it is bounded above and below.

 Heine-Borel Theorem
A subset of 
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 is compact iff it is closed and bounded.

 Theorem 13
The continuous image of a compact set is compact.

 Lemma

If 
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 is closed and 
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 Extreme Value Theorem (Generalized)
A continuous function 
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 on a (non-empty) compact set 
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attains its maximum value at some point of 
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	Analysis

This is a generalized version of the one we see in 2.3 Part III.  As a closed interval 
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are both closed and bounded.  Thus, it is compact.
We know …
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	Proof

Since 
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 is continuous and 
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 is compact, by Theorem 13, 
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So, by the H-B Theorem, 
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Since 
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is nonempty and bounded above, by the completeness axiom, 
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Therefore, 
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attains its maximum value at some point of 
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